
HTML Training 101
Just Enough to be Dangerous



Part I • Core Concepts

■ Brief History of the Internet 
■ What Is HTML and Why? 
■ Structure vs. Appearance 
■ The WEB is Not PRINT! 
■ Komputers R Stoopid 
■ Stuff Not Covered

A Note on Humor: Let’s face it, HTML is pretty dry stuff. By keeping this 
presentation fun, I hope to help you keep awake. Yeah, you, in the back, 
eyes already droopy. I see you there!



Part II • Specific Details

■ Tags 
■ Formatting a Web Page 
■ Forms



Part III • Advanced Concepts

■ Pitfalls for Government Websites 
■ Cross-Browser Compatibility 
■ Coding With Style



Part IV • Q & A

■ Questions? 
■ Comments? 
■ Concerns? 
■ Snoring?



Part I • Core Concepts

■ Brief History of the Internet 
■ What Is HTML and Why? 
■ Structure vs. Appearance 
■ The WEB is Not PRINT! 
■ Komputers R Stoopid 
■ Stuff Not Covered



Brief History of the Internet

■ ARPANet–A cold war-era project designed 
as a decentralized communications 
network. 

■ UUCPNet–Set up by Duke University in 
1979 to transfer news and messages. 

■ TCP/IP–Networking the networks. 
■ “Mosaic” (the first web browser) debuts in 

1993, bringing “the web” to the world.



What Is HTML and Why?

■ HTML stands for “hypertext markup 
language.” 

■ “Hypertext” = links! Or any text that 
references something else. 

■ “Markup” = tags! This tells the browser 
what it’s looking at. (More on that later.) 

■ 100% text. That makes it lean, mean, and 
low-bandwidth friendly!



Structure vs. Appearance

■ “Clean” HTML is all about the page 
structure, not what it looks like. Is 
something a header? A paragraph? A list? 
A link? 

■ The appearance of an element is its style. 
Is it bold? Is it yellow? Is it underlined? 

■ The difference is important. A blind person 
can’t tell if text is yellow.



The WEB Is Not PRINT!

■ People accessing your web page might be: 
– Using a Web browser 
– Using an ooooooold Web browser! 
– Using a screen reader 
– Using a cellphone or PDA 
– Unable to use a mouse 
– In another country 

■ There’s no way to be sure what they’ll 
“see,” so good structure is vital.



Komputers R Stoopid

■ They do what you told them to, not what 
you wanted them to. 

■ They never guess — if they don’t know 
what to do, they pitch an error. 

■ If they could guess, they’d guess wrong 
every time anyway. 

■ This is why getting commands right (and 
without typos) is important.



Stuff Not Covered

■ Hosting/Serving Pages 
■ Scripts, Web Programming 
■ Database Integration

LINGO CHECK 

PAGE: This is a file (or several files) you view in a web browser. It may 
be static (i.e., pregenerated) or dynamic (i.e., generated at the time it’s 
served). 

SITE: This is one or several pages under a single domain, usually with a 
unified purpose. 

SERVER/CLIENT: A computer that provides information to another 
computer is a server. The computer that receives the information is the 
client. A host is an entity (such as a company) that houses servers.



Part II • Specific Details

■ Tags 
■ Forms 
■ Formatting a Web Page



Tags • “Speaking HTML”

■ Tags put the “markup” in hypertext markup 
language. 

■ They look like this: 

<tag>stuff inside the tag</tag>

■ Everything in HTML is done with tags!



Types of Tags

■ “Opening” tags tell the browser “start applying 
the tag here.” They are in brackets, such as 
<tag>

■ “Closing” tags tell the browser “stop applying the 
tag here.” They are indicated with a slash, such 
as </tag>

■ “Self-closing tags” open and close themselves in 
the same tag. They are indicated by a slash at 
the end, such as <tag />



Some Real HTML

■ Even without knowing any HTML, you can start to 
see how it works here: 

<p>      <!-- opening tag! -->
This is a sample of
real HTML!<br /> <!-- self-closing tag! -->
<strong>Isn’t that exciting?</strong>

</p> <!-- closing tag! -->



Attributes

■ Many tags have attributes, which define or 
alter the tag’s behavior. 

■ These are in the opening tag, and usually 
have a format like this: 

attribute = “parameter”
■ Attributes have a default value; if the 

attribute is not specified, it will use the 
default.



“Name” vs. “ID”

■ “Name” and “ID” are both very commonly-
used attributes. For example, the field to 
input a person’s first name on a 
registration form might be named 
“first_name”. 

<input type=“text” name=“first_name” />



“Name” vs. “ID” (cont’d)

■ So what’s the difference? 
■ Many tags can have the same name, but each ID 

is unique.* 
■ A page’s styles are often linked to an element’s 

ID, but cannot be linked to the element’s name. 

*In theory, at least. Web pages will work if you give 
different things the same ID, and sometimes Javascript 
depends on that. But it’s “technically” wrong.



Referencing an ID

■ The neat thing about IDs is that you can use 
them to link to a specific part of a page. 

■ For instance, if you have a section with the ID 
“maincontent,” you can link directly to it with the 
URL mypage.htm#maincontent. 

■ Besides being a handy shortcut, this becomes 
very important for accessibility, later.



Attributes vs. Styles

■ Many tags have visual attributes. For 
instance, the image tag (<img>) has a 
“border” attribute. 

■ “But wait!” you say. “I thought structure 
and appearance should be separated!” 

■ You’re absolutely right. That’s why the 
“border” attribute is deprecated.



Attributes vs. Styles (cont’d)

■ “Deprecated” elements are those which the 
W3C* has said should no longer be used, 
although most browsers still understand them. 

■ In general, if a tag has a visual attribute (such as 
“color,” “border,” “height,” etc.), you should not 
use that attribute, but put that information into 
the tag’s style instead. (We’ll talk about that 
later.) 

*W3C = “World Wide Web Consortium.” These are the guys who set the 
standards that web programmers should use. We’ll hear more from 
them later, too.



BLOCK vs. -inline-

■ There are two other ways of describing 
tags, “block” or “inline.” 

■ Block-level tags indicate a piece of 
structure, one of the “blocks” that makes 
up the page, so to speak. 

■ Inline tags refer to items within a block, 
but do not in themselves define a block.



BLOCK vs. -inline- (cont’d)

■ Some block-level tags… 

– Body <body>
– Paragraph <p>
– Header <h1>
– Table <table>
– Ordered List <ol>
– Block quote <blockquote>

■ Some inline tags… 

– Anchor <a>
– Image <img>
– Strong <strong>
– Emphasis <em>
– Line-break <br />
– Quote <q>



Some Key Tags We’ll Discuss
■ HTML, Head, Body — The Skeleton of Your Page 
■ DIV — Creating Your Work Space 
■ BR vs. P — New Line or New Paragraph? 
■ H1 and Its Children 
■ A HREF and Its Cousins 
■ IMG — Purdy Pitchers! 
■ STRONG and EM — Bold? Italics? What Are Those? 
■ UL, OL, LI, and Other Musical-Sounding Tags 
■ SPAN — When Nothing Else Works!



<html>, <head>, <body>
■ These tags tell a browser that it’s looking at a web page. 

<!DOCTYPE><!-- we’ll get back to this one -->
<html> <!-- tells the browser “This is an HTML 

document!” -->

<head>
<!-- contains important, 
non-displaying information -->

</head>

<body>
<!-- this is what people see -->

</body>

</html>



It’s All in Your <head>

■ Provides information about your page, such as 
what it’s called and what it’s about, to the 
browser, search engines, or other web pages. 

■ The only tags legal inside the page header are: 
<base>, <link>, <meta>, <title>, 
<style>, and <script>. 

■ Well-crafted meta-tags and other header info are 
important for search engine optimization (SEO) 
and other uses.



A Healthy <body>

■ This is where the stuff people are 
supposed to see goes. This is the “page” 
part of the web page. 

■ The contents of the page are contained in 
nested tags, such as <p> for “paragraph.” 

■ The page body can contain almost any 
HMTL tag, except for the ones that go into 
the document header!



<div> • Creating Your Workspace

■ <div> (short for “division”) only does one 
thing: create a block-level container.  

■ Each div is identified by an “id” attribute, 
so you can tell one from another. 

■ You can have divs inside other divs, 
paragraphs in divs, and so on. 

■ You apply styles to a div to determine its 
size, formatting, placement, etc.



<div> • Creating Your Workspace

<div id=“container”>

<div id=“leftbox”>
<!-- stuff -->

</div>

<div id=“right_upper_box”>
<!-- stuff -->

</div>

<div id=“right_lower_box”>
<!-- stuff -->

</div>

</div>

container 

leftbox right_upper_box 

right_lower_box 



<br /> vs. <p>

■ HTML ignores the return key – and blank spaces. 
It only “sees” code! 

■ <br /> is a line break; <p> is a paragraph. They 
aren’t the same!

■ <p> is a structure, and should be used for almost 
all situations.

■ When would be a good time to use <br /> 
instead of <p>? 

Bonus question: why <br /> and not <br>?



<br /> vs. <p>

<p id=“circleaddress”>
Circle Solutions, Inc.<br />
8280 Greensboro Drive<br />
Suite 300<br />
McLean, VA 22102<br />
<a href=“http://www.circlesolutions.com”>

www.circlesolutions.com
</a>

</p>



<h1> and Its Children

■ Meet the “header family!” 
■ <h1>, <h2>, <h3> … <h5>
■ Like <p>, a header is a structure. The fact that 

its default formatting changes is just a handy 
shortcut. 

■ Some people do this: <p class=“header”>. 
Throw rocks at them! 

■ If it’s a header, it should be in a header tag!



<h1> and Its Children
<body>

<h1>HTML Training 101</h1>
<h1 class=“subtitle”>Just Enough to be 
Dangerous</h1>

<p>Hello and welcome blah blah blah…</p>

<h2>Part I: Core Concepts</h2>
<p>The internet started with blah blah blah…
</p>

</body>



<a href=“”> and Its Cousins

■ <a> = “anchor” – it’s just a handy (inline) 
tag to hang things on. 

■ <a> tags can have lots of attributes, but 
90% of the time, they use href (i.e., 
“hypertext reference”) to create links. 

■ href – the ability of pages to link to other 
pages – is what makes the web so useful!



<a href=“”> and Its Cousins

■ To create a link: 
<a href=“{URL you are linking to}”>text</a>

<a href=“http://www.google.com”>Search Google!</a>

■ Most URLs start with http:// or https:// but 
other types are possible (such as mailto: or 
ftp://).

LINGO CHECK 

URL: “Uniform resource locator.” Basically, an item’s address on the web. (Remember, 
engineers came up with these terms.) 

HTTP: “Hypertext transfer protocol.” The language computers use to call and send HTML 
files. 

HTTPS: Just like HTTP, except with added security (such as encryption).



<img> • Show Me Something!

■ <img>, as you might guess, stands for 
“image” 

■ The web generally supports .gif, .jpg, 
and .png image formats. Individual 
browsers may support more. 

■ The web displays images at 72 dpi (“dots 
per inch”) – but your screen resolution 
determines how big an “inch” is.



Image Formats

■ .gif stands for “graphics interchange 
format” and was created by CompuServe. 
They pronounce it “jif,” like the peanut 
butter. But they’re wrong. ;-P 

■ .jpg stands for Joint Photographic Experts 
Group (naturally). 

■ .png stands for “portable network 
graphics.” Whee.



Image Formats (cont’d)

■ .gif images are best for clean, simple line-
art, such as technical illustrations or 
corporate logos. They can have 
transparent sections, but have limited 
colors. 

■ .jpg images are best for color-rich images 
such as photographs, paintings, or 
gradients. They have a wider range of 
color, but cannot have transparencies.



Image Formats (cont’d)

■ .png images were created to have the 
best of both worlds (and to get around 
certain copyrights) … but came in kinda 
late. 

■ .png images have lots of advanced 
capabilities, but are still only used by a 
relatively small number of people.



<strong> and <em>

■ <strong> indicates an important item, 
and is usually rendered in bold type. 

■ There is a <bold> tag, but it is 
deprecated. Why is this? 

■ <em> indicates an item has emphasis, and 
is usually rendered in italics. 

■ There is also an <i> tag, but it is also 
deprecated. Same reason.



<ul>, <ol>, <li>

■ <ul>, <ol>, and <li> are used to make 
lists – like this slide! 

■ <ul> makes “unordered lists” – i.e., 
bulleted lists. 

■ <ol> makes “ordered lists” – i.e., 
numbered or outline-style lists. 

■ <li> is wrapped around each item of a list 
(of either type).



Lists In Action • Unordered

■ First bullet 
– First sub-bullet 

■ Second bullet 
■ Etc.

<ul id=“unordered_list_sample”
style=“list-style-type: square”>

<li>First bullet
<ul>
   <li>First sub-bullet</li>
</ul>

</li>
<!-- notice that the

sub-bullet is inside -->

<li>Second bullet</li>

<li>Etc.</li>

</ul>



Lists In Action • Ordered 1

1. First bullet 
1. First sub-

bullet 
2. Second bullet 
3. Etc.

<ol id=“ordered_list_sample”
style=“list-style-type: decimal”>

<li>First bullet
<ul>
   <li>First sub-bullet</li>
</ul>

</li>
<!-- notice that the

sub-bullet is inside -->

<li>Second bullet</li>

<li>Etc.</li>

</ol>



Lists In Action • Ordered B (?!)

A. First bullet 
A. First sub-

bullet 

B. Second bullet 
C. Etc.

<ol id=“ordered_list_sample”
style=“list-style-type: upper-
alpha”>

<li>First bullet
<ul>
   <li>First sub-bullet</li>
</ul>

</li>
<!-- notice that the

sub-bullet is inside -->

<li>Second bullet</li>

<li>Etc.</li>

</ol>



<span> • When Nothing Else Works!

■ <span> is used to define an inline section within 
a text block, and is most commonly used to apply 
style information (font change, color, etc.).

■ It is a structural element, but its primary use is 
formatting.

<p>Is anything prettier than the color <span

class=“bluetext”>blue</span>?</p>

Is anything prettier than the color blue?



What’s So Special About Special Characters?

■ The WEB is not PRINT! Remember? 
■ The web doesn’t normally have curly 

quotes, em-dashes, en-dashes, ©, etc., 
because not all fonts contain these 
characters. 

■ With the marketization of the web, 
however, some people have demanded 
them. What to do?



What’s So Special About Special Characters?

■ HTML has special codes that tell the browser to 
render these characters, font or not. 

■ The code usually looks like: 

&{description};

■ For instance: &mdash; draws “—”, &ntilde; 
draws “ñ”, and so on.



Some Common Special Characters

■ &mdash; (—)
■ &ndash; (–)
■ &ldquo; (“)
■ &rdquo; (”)
■ &lsquo; (‘)
■ &rsquo; (’)
■ &hellip; (…)

■ &Ntilde; (Ñ)*
■ &ntilde; (ñ)*
■ &aacute; (á)
■ &eacute; (é)
■ &iacute; (í)
■ &oacute; (ó)
■ &uacute; (ú)

*Yup, it’s case-sensitive! Darn tricky, those HTML elves.



Forms • The Basics

■ Forms are used to modify the behavior of pages 
– but, by themselves, they don’t do anything! 

■ HTML is “static,” i.e., what is sent to the server is 
what it shows. For the page to be “dynamic,” it 
requires some variety of scripting, such as 
Javascript, PHP, ColdFusion, et al. 

■ Therefore, the coverage of forms in this course is 
very limited, as we’re concerned purely with 
HTML.



<form> Tag, action= Attribute

■ Forms require at least two pieces, the form page 
itself, and the “landing” page (a.k.a. target page, 
processing page, etc.). These can be the same 
page – you can send a form back to itself. 

■ The form page has a <form> tag on it. Inside the 
form tag is an action= attribute, which tells the 
form the name of the landing page to go to for 
processing. 

■ All form elements require a name= attribute! 
Otherwise the landing page won’t be able to see 
the data you’re sending.



A Very (Very) Simple Form
<form action=“landingpage.cfm” id=“userinfo”>

<p>First Name:
<input type=“text” name=“first_name”
size=“25” maxlength=“25” /></p>

<p>Last Name:
<input type=“text” name=“last_name”
size=“25” maxlength=“25” /></p>

<input type=“submit” name=“submit”
value=“Go!” />

</form>



Can I Get Your <input>?

■ <input> is where you enter data, which is 
then sent to the landing page for 
processing. 

■ By itself, it doesn’t do anything. It needs a 
type= attribute to be useful! 

■ Valid type= attributes include text, 
checkbox, radio, button, password, reset, 
submit, and others.



<select> an <option>

■ <select> creates a drop-
down list, popular for 
constraining input values.

■ <option> tags populate 
the otherwise-empty 
<select> list.

■ The structure is somewhat 
similar to the lists we saw 
earlier.

<select name=“daysoftheweek”>
<option value=“1”>

Monday</option>
<option value=“2”>

Tuesday</option>
<option value=“3”>

Wednesday</option>
<option value=“4”>

Thursday</option>
<option value=“5”>

Friday</option>
<option value=“6”>

Saturday</option>
<option value=“7”>

Sunday</option>
</select>

DANGER, WILL ROBINSON! <select> statements are very hackable. 
Don’t depend on them to secure a form!



<textarea />: For People With a Lot to Say

■ <textarea> is similar to <input 
type=“text”> except that it creates a large 
field for people to type in (such as a “notes” or 
“comments” field).

■ A <textarea> field’s size is determined by a 
number of rows and columns, set as attributes. 

■ It is its own tag, rather than being a type of 
<input>. Why? Who knows? HTML is just 
sometimes weird that way. Blame it on design by 
committee.

<textarea rows=“5” cols=“60” name=“comments_field” />



submit to My Will! Muahahahaaa!

■ <input type=“submit”> creates the “submit” 
button, which tells the form to go to the landing 
page.

■ There are other types of submit inputs, including 
type=“image” … but the good old-fashioned 
submit button is usually your best bet. 

■ To have the button labeled something other than 
“Submit,” give it a value= attribute.



Forms vs. URL Parameters

■ Sometimes, instead of using a form, info 
will be sent to a page via a URL parameter. 
For instance: http://www.fakeurl.com/page.htm?
fontsize=small tells the server “send me 
page.htm and tell it that I want the value 
of ‘fontsize’ to be ‘small’.” 

■ URL parameters are very limited, and very, 
very not secure!



Forms vs. URL Parameters (cont’d)

■ Because URL parameters can easily be 
seen, somebody who wants to muck 
around with the page could send anything 
they wanted. 

http://www.fakeurl.com/page.htm?fontsize=crashpage

■ This is a common way for hackers to send 
malicious code or otherwise attempt to 
break stuff.



Forms vs. URL Parameters (cont’d)

■ This is not to say that URL parameters are useless, or we 
wouldn’t still have them, obviously. Just that they’re 
limited. 

■ You should never send unencrypted critical data (say, 
credit card numbers…) via URL parameters, and any code 
on the landing page that uses the URL parameter needs 
to be carefully secured. 

■ They’re best used for simple navigational stuff – e.g., “go 
to this page, show this image, make the font larger or 
smaller,” that kind of thing. They can also be a great way 
to send “canned searches” to a search engine.



Formatting a Web Page

■ Pure HTML pages work very well, but are 
dull. Most users prefer things to be shiny. 

■ So we add formatting! But formatting can 
be a trap. 

■ You mustn’t confuse format with 
CONTENT.



Read a Page, Or Listen to It? 
(Why Structure Is King)

■ Remember our mantra, the WEB is not 
PRINT! 

■ Just like books are printed in Braille for the 
blind, there are web browsers that “read” 
web pages aloud. And if you’ve put in a 
bunch of pretty foofery that the web reader 
thinks is CONTENT, the blind web user is 
going to hate your guts.



I Love blockquote – It Gives Me Bigger 
Margins! =^.^=

■ Browsers add default formatting to various 
tags, e.g., <h1> tends to be large and 
boldface … or <blockquote> tends to 
have indented margins. 

■ In “the old days” (i.e., 1996), people would 
use these to format the page, and you still 
occasionally run into that.



I Love blockquote – It Gives Me Bigger 
Margins! =^.^=

■ So what happens when a web-reader finds 
a chunk of text in a <h2> tag when all the 
coder really wanted was to make it large 
and bold? 

■ Or a <blockquote> section that isn’t 
really a block quotation?



Tables: Good or Evil?

■ “I don’t care if the web is not print, I want my 
webpage to look like a brochure!”  – the single 
largest cause of web developer mental 
breakdowns. 

■ Tables were once the closest thing web 
developers had to “print-like” control of webpage 
layouts. 

■ And then a humanity-hating vampire guy named 
David Siegel wrote Creating Killer Websites and 
people just went nuts with it.



Tables: Good or Evil?

■ People used tables to create columns! 
Lists! Pages that looked like brochures! 
Addresses formatted so that the phone and 
fax numbers had the same tabular indent! 

■ And the poor people trying to view these 
monstrosities of web design with web-
readers hated life.



Tables: Good or Evil?

■ People who can’t use a mouse and so 
move their cursor from item to item with a 
TAB key often get unpredictable or 
downright strange results with tables. 

■ Navigating inside tabular formatting with a 
web-reader is a nightmare of useless 
information and “empty” cells that only 
contain images or blank spaces to make 
things fall into the right place.



Tables: Good or Evil?

■ So what are they actually good for? 
■ Well … tabular content. Seriously. For 

that, tables rock.

This Year Last Year Difference
591 222 369

-33 67 100

Fish Frogs Legs



Building a Proper Table
<table id=“years_difference”>

<tr>
<th id=“this_year”>This Year</th>
<th id=“last_year”>Last Year</th>
<th id=“difference”>Difference</th>

</tr>
<tr>

<td headers=“this_year”>591</td>
<td headers=“last_year”>222</td>
<td headers=“difference”>369</td>

</tr>
<tr>

<td headers=“this_year”>-33</td>
<td headers=“last_year”>67</td>
<td headers=“difference”>100</td>

</tr>
<tr>

<td headers=“this_year”>Fish</td>
<td headers=“last_year”>Frogs</td>
<td headers=“difference”>Legs</td>

</tr>
</table>

<th> creates a “table 
header,” telling the page 
that this is the label for 
content in the table. Each 
header’s ID must be 
unique.

<td> creates “table data.” 
The “headers” attribute 
indicates which <th> 
blocks apply to this piece of 
data. You can have one, 
none, or lots of headers for 
each cell.



Cascading Style Sheets (CSS)

■ CSS is the proper way to style your web 
pages, separating content from 
presentation. 

■ Of course, CSS isn’t perfect. That would be 
too easy.

LINGO CHECK 

CSS: “Cascading Style Sheets.” This is simply a collection of styles that define how your 
page will render, be it on a screen, from a printer, etc. 

Cascading: CSS is considered to be “cascading” because styles can be “inherited” from 
other styles, following set rules of priority. For example, if “H1” is defined as bold type, 
then “H1.leftmenu” would “inherit” the bold type property unless you specify otherwise.



CSS Is a BIG Topic

■ Unfortunately, it’s too big a topic for this 
course, but here are some basic concepts: 

■ Any HTML tag can have styles applied, but 
not every style applies to every tag. 

■ Styles can be applied in a linked file, in the 
header of your HTML file, or even within 
an individual tag.



More CSS Core Concepts

■ The best way to apply CSS usually by defining 
classes for each tag. For instance, you might 
have:

<P> Your basic paragraph tag.

<P class=“leftmenu”> A paragraph in your left menu, probably a smaller 
font or possibly a different color.

<P class=“pullquote”> A paragraph that highlights some text element in 
your current story, a large font with a shaded 
background and colored border.



Learning CSS

■ A good place to start is http://
www.w3schools.com/css/ 

■ CSS is not hard, but it can be convoluted 
and often behaves in unexpected ways. 
Don’t fret if it takes a while to pick it up.

http://www.w3schools.com/css/


Part III • Advanced Concepts

■ Pitfalls for Government Websites 
■ Cross-Browser Compatibility 
■ Coding With Style



Security and Privacy: A Vitally Important 
Pain in the Neck

■ Even if Circle isn’t exactly MI6, we still sometimes 
work with potentially-sensitive information and 
have to be aware of security issues. 

■ Even something as relatively benign as a 
conference “list of attendees” is a potential 
minefield. Imagine, for instance, thieves planning 
to rob someone’s house because they looked at 
our website and found out the person wouldn’t 
be home during the conference.



Cookies, and Why We Don’t  
Use Them

■ Websites can save and retrieve information 
from your computer by means of a 
“cookie” – which is very handy. 

■ Unfortunately, cookies can also store 
malicious code, or share information with 
people you’d rather they didn’t.

LINGO CHECK 

Cookie: An internet cookie is simply a file written by the web browser on your computer, 
which records information about a given website (such as your login information, items 
you’ve looked at on previous occasions, etc.). When used right, they are not only 
harmless, but beneficial – without them web sites have no “persistence.” 

     Unfortunately, they aren’t always used right.



Cookies, and Why We Don’t  
Use Them

■ Cookies have gained something of a bad 
rap – while they can be problematic, 99% 
of them are harmless and downright 
convenient. 

■ But, because politicians like simple, one-
size-fits-all answers, the government policy 
more or less boils down to, “Cookies are 
bad. Don’t use them.”



Cookies, and Why We Don’t  
Use Them

■ One of the implications of this: government web 
sites are not “persistent” – i.e., when you leave a 
website, that website completely forgets you. 

■ Our clients, as a rule, hate this and want to get 
around it. But we are prevented by law from 
getting around it. So when our clients say, “Can’t 
we just do it anyway?” our answer must be, 
“Sorry, but no.” 

■ There are rumblings that the government may 
revisit its policy on cookies sometime soon – but 
they haven’t yet!



Personally Identifiable Information 
(“Mmm, PII…”)

■ PII is anything that connects a specific 
user with a specific activity – whether it’s a 
page they’ve visited, a document they’ve 
downloaded, or anything. 

■ We’re not allowed to track or save PII 
except in very specific and limited ways. 
For instance, we can’t ship you a booklet 
on depression if we don’t know your 
address.



Keep Your Fingers Outa My PII

■ Many people are understandably wary of 
having the government keep track of 
physical or mental health issues they may 
have wanted to research – and they 
especially don’t want that information to 
be tracked across multiple websites.



What Ingredients Make PII?

■ Name 
■ Address 
■ Phone Number 
■ E-mail Address 
■ Computer IP number 

(sometimes) 
■ Login ID’s 
■ Passwords

■ Social Security 
Number 

■ Credit Card 
Information 

■ Account Numbers 
■ Did we mention login 

ID’s and passwords? 
That’s an important 
one.



Section 508 
(Or, Why Your Site is Dull)

■ “Section 508” or “508 Compliance” basically boils 
down to this: our websites are for everybody to 
use – not just people who can see, easily click 
around with a mouse, and have Javascript 
enabled on their computer. 

■ This means we have to design sites that are easy 
to navigate, are screen-reader friendly, and do 
not require Javascript to work.



YES, Even for Client-Only Pages!

■ Sometimes clients will ask us to ignore 508 
restrictions for “internal only” utilities, such 
as project tracking. Sorry, it still ain’t 
kosher. 

■ Legal issues aside, it sets up a 
discriminatory work atmosphere. Is a blind 
person going to be turned down for a job 
because they can’t use an “internal only” 
non-compliant website?



The 16 Rules of 508
■ Every non-text element (e.g., 

an image) must have a text 
equivalent (e.g., an alt 
attribute). 

■ Every multimedia presentation 
(e.g., a Flash movie) must have 
an equivalent alternative. 

■ Any information conveyed with 
color must also have a “non-
color” indication (such as 
heavier type, underlining). 

■ The page must be readable 
without a stylesheet!

■ You must have text links as well 
as any server-side image map 
links. 

■ If an image map requires a 
custom shape, it must be a 
“client-side” map. 

■ Data tables must have row and 
column headers. 

■ Data cells in a table must be 
associated with the appropriate 
headers.



The 16 Rules of 508 (cont’d)
■ Don’t use frames.* 
■ Don’t make the screen flicker at 

low refresh rates – i.e., don’t 
put in blinky or scrolling text. 

■ If there’s no other way to 
comply with 508, make a text-
only website. 

■ Don’t code the page so that it 
requires scripting (e.g., 
Javascript) to work.

■ If your page needs external 
software (such as PDF readers), 
you must provide a link to that 
software. 

■ Forms must be built in a way 
that enables “assistive 
technology” (e.g., screen 
readers) to work easily. 

■ Make it easy to skip navigation 
links. 

■ If a timed response is required, 
alert the user and give them 
time to ask for more time.

*Okay, that’s not the official rule, but that’s the easiest way to go. Frames 
are just bad, don’t use them. WHAT was the W3C thinking with those???



Browsers  
(or, “It Looked Fine in Firefox!”)

■ In the early days of the web, Netscape and 
Microsoft Internet Explorer (a.k.a. IE), were 
battling it out for who would conquer the web, so 
they each piled on competing “features” that 
they tried to convince W3C to make standard. 

■ Netscape is history and IE is still here … but did 
it win the Browser Wars? 

■ Netscape’s legacy lives on in Mozilla Firefox (and 
others).



W3C, Standards, and Other Things 
Microsoft Ignores

■ The World Wide Web Consortium (a.k.a. 
“W3C”) sets the standards for HTML, CSS, 
and other web-based technologies, off in 
an ivory tower somewhere. 

■ But, as the U.N. of the world wide web, 
they have exactly as much authority, i.e., 
none at all.



W3C, Standards, and Other Things 
Microsoft Ignores

■ Mozilla (the makers of Firefox) and most 
other browser manufacturers do their best 
to comply with the W3C guidelines, but 
Microsoft, as always, is a law to itself. 

■ This has led to two things: 
– Web sites that work only in IE (or not at all in 

IE), or 
– Web designers jumping through hoops to 

make their pages work both in Firefox and IE

Why Firefox? Firefox is the most popular of the more-compliant 
browsers. If it works in Firefox, it’ll probably work in the rest.



!DOCTYPE, The Quicker  
Browser-Fixer

■ The very first line in your HTML code 
should be a declaration of what kind of 
document the browser is looking at, which 
is !DOCTYPE. 

■ !DOCTYPE defines what release of HTML 
(or other web language) the page is coded 
to, so the browser knows what tags it can 
expect to see and how to handle them.



!DOCTYPE, The Quicker  
Browser-Fixer

■ Among other things, this tells more recent 
versions of IE: “Render to standards!” 

■ If !DOCTYPE is absent, IE will just go do 
its own thing and who knows what you’ll 
get? 

■ Sadly, even the magic of !DOCTYPE can’t 
completely tame IE. There are still plenty 
of ways IE will break pages even if you 
have a !DOCTYPE tag.



!DOCTYPE, The Quicker  
Browser-Fixer

■ Circle currently codes to the standard of “Transitional 
XHTML 1.0”, so as the first line of our HTML pages we 
put: 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

■ You’re right, it does look like gobbledygook. But the 
browsers know what it means, that’s what’s important. 

■ As standards change, the !DOCTYPE tag we use will 
change with it. The W3C is looking to do away with 
“XHTML” and move to “HTML 5.0” … eventually.



XHTML? HTML? XML?

■ These are all variations on a theme. Remember 
that HTML meant “hypertext markup language?” 

■ XML = “extensible markup language” – this is a 
language where you can define your own tags. 
Therefore… 

■ XHTML = “extensible hypertext markup 
language” – that is, a hypertext markup 
language where you can define your own tags. 
The only problem is, it didn’t fly.



XHTML vs. HTML 5+

■ The W3C decided that HTML had run its course 
and that the world should move to a new 
language, XHTML, that includes HTML. 

■ But the geek community just shrugged and said, 
“Meh. We’re sticking with HTML, it does the job. 
Keep your XHTML, we don’t need it.” 

■ So after years of wrangling, the W3C has given 
up on XHTML. But until HTML 5 actually becomes 
the standard, XHTML 1.0 is what we’re using.



Coding With Style • META Tags

■ META tags go into the header of your 
webpage and convey lots of useful “non-
rendered” stuff, especially for search 
engines – although they’re nowhere near 
as important as they once were.

The decline and fall of the META tag: Marketing people, ever eager to 
abuse a resource, starting putting all sorts of junk into their META tags in 
order to “optimize their search engine rankings” – i.e., rate higher on any 
given search than they really deserved to be. This naturally led to search 
engines being less and less useful because they depended on META tags 
having accurate information. (“Why is my search for motorbikes coming up 
with results about Viagra?”) To fight back, the search engines, starting with 
Google, came up with their own ways of indexing pages that didn’t depend on 
META information. This is one reason Google is leader of the pack.



META Tags are Down, But Not Out!

■ META tags are purely optional. Your page 
will work just fine without them. But… 

■ This isn’t to say that META tags are 
useless! Many search engines (including 
Google) won’t “take your page seriously” 
unless it has valid, well-constructed META 
tags. 

■ The most important of the META tags are 
“description” and “keywords.”



Description, Keywords
■ Guess the website! 

<meta name="description" content="Online shopping from the earth's 
biggest selection of books, magazines, music, DVDs, videos, 
electronics, computers, software, apparel &amp; accessories, 
shoes, jewelry, tools &amp; hardware, housewares, furniture, 
sporting goods, beauty &amp; personal care, broadband &amp; 
dsl, gourmet food &amp; just about anything else." />

<meta name="keywords" content="Amazon, Amazon.com, Books, Online 
Shopping, Book Store, Magazine, Subscription, Music, CDs, DVDs, 
Videos, Electronics, Video Games, Computers, Cell Phones, Toys, 
Games, Apparel, Accessories, Shoes, Jewelry, Watches, Office 
Products, Sports &amp; Outdoors, Sporting Goods, Baby Products, 
Health, Personal Care, Beauty, Home, Garden, Bed &amp; Bath, 
Furniture, Tools, Hardware, Vacuums, Outdoor Living, Automotive 
Parts, Pet Supplies, Broadband, DSL" /> 



Coding With Style • Indent Your Code

■ In all of our examples, the code has been 
indented to make it easier to read. 

■ Remember that HTML ignores returns and 
blank spaces … so you can toss in as many 
of those as you like. White space costs no 
bandwidth and is easy on the eyes! 

■ Typically, each level of “nesting” gets an 
additional indent.



Coding With Style • Indent Your Code

■ Which is easier to read?
<table id=“years_difference”>
  <tr>
    <th id=“this_year”>This Year</th>
    <th id=“last_year”>Last Year</th>
    <th id=“difference”>Difference</th>
  </tr>
  <tr>
    <td headers=“this_year”>591</td>
    <td headers=“last_year”>222</td>
    <td headers=“difference”>369</td>
  </tr>
  <tr>
    <td headers=“this_year”>-33</td>
    <td headers=“last_year”>67</td>
    <td headers=“difference”>100</td>
  </tr>
  <tr>
    <td headers=“this_year”>Fish</td>
    <td headers=“last_year”>Frogs</td>
    <td headers=“difference”>Legs</td>
  </tr>
</table>

<table id=“years_difference”><tr><th 
id=“this_year”>This Year</th><th 
id=“last_year”>Last Year</th><th 
id=“difference”>This Year</th></tr><tr><td 
headers=“this_year”>591</td><td 
headers=“last_year”>222</td><td 
headers=“difference”>369</td></tr><tr><td 
headers=“this_year”>-33</td><td 
headers=“last_year”>67</td><td 
headers=“difference”>100</td></tr><tr><td 
headers=“this_year”>Fish</td><td 
headers=“last_year”>Frogs</td><td 
headers=“difference”>Legs</td></tr></table>



Coding With Style • Comments

■ Comments are little “notes for yourself” in the 
code that do not render on the page. We’ve been 
using them all along! 

<p>      <!-- opening tag! -->
This is a sample of
real HTML!<br /> <!-- self-closing tag! -->
<strong>Isn’t that exciting?</strong>

</p> <!-- closing tag! -->

Dig it!



Comments-as-Outline

■ Programmers often use comments as an 
“outline” for their code. 

<!-- page header will go here -->

<!-- page content will go here -->

<!-- page footer will go here -->



When Should You Comment?

■ Early and often! If not for yourself, then for 
people who have to come along and 
maintain your code later so they don’t 
have to sit there going, “What was that 
coder thinking???” 

■ When in doubt, comment. They take 
negligible amount of bandwidth but can 
really save you headaches later.



Types of Comments

■ Just about every programming language 
has its own commenting schema, but they 
tend to fall into a few broad types. Here 
are the ones you’ll typically encounter on 
the web:

HTML: <!-- comment here --> 

CSS: /* comment here */ 

JavaScript: // comment here or 

JavaScript: /* comment here */ 

ColdFusion: <!--- comment here --->

Classic ASP: ’ comment here 

VBScript (ASP.NET): ’ comment here 

PHP: // comment here or 

PHP: /* comment here */ 



We’re Done!

■ Congratulations, you’re a master of HTML 
now. Go build your pet a web page! ;) 

■ Seriously, tho … questions? Comments?


